Question 1. Let f be analytic inside domain C. Prove that the number of zeros of f inside C equals $\frac{1}{2 \pi} \Delta_{C} \arg (f)$ where $\Delta_{C} \arg (f)$ is the total change in argument of $f(z)$ when moving along C.

Let $N(T)$ be the number of zeros of $\zeta(z)$ in the rectangle $0<R(z)<1$ and $0<R(z)<T$.
Prove that

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+O(\log T)
$$

Hint: Let $f=\xi, C$ be the rectangle with vertices $2,2+i T,+i T, _1$ and use above.
Question 2. Let x be a primitive character modulo q (primitive means $x^{k} \neq 1$ for any $k<\emptyset(q)$; all the results we discussed in class regarding L - functions hold only for primitive characters as non- primitive characters are characters also of some $p<q, p \mid q)$.
Assume that $x(-1)=1$. Let

$$
\xi(z, x)=(q / \pi)^{z / 2} \Gamma(z / 2) L(z, x)
$$

Prove that $L(z, x)$ has infinitely many zeros in the strip $0<R(z)<T$ and

$$
\xi(z, x)=e^{A z+B T T}\left(1-\frac{z}{p}\right) \cdot e^{z / p}
$$

Where pranges over non- trivial zeros of $L(z, x)$. You may assume that $\xi(z)=\xi(1-z)$.
Question 3. Define

$$
G_{k}(z)=\sum_{(m, n) \neq(0,0)} \frac{1}{(m z+n)^{k}}
$$

for $k \geq 3$. prove that

$$
\begin{aligned}
& G_{k}(r z)=(e z+d)^{k} G_{k}(z), \\
& \text { for } T \in S L_{2}(Z) \cdot T=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{aligned}
$$

Question 4. Derive Laurent series expansion of $\zeta(z)$ around $z=1$. Since $\zeta(z)$ is meromorphic over the complex plane with a simple pole at $z=1$, this expansion will be valid over the entire complex plane.

Question 5. Prove that

$$
\zeta(z)=\sum_{n=1}^{m=1} \frac{1}{n^{2}}+\frac{m^{1-z}}{z-1}-z \int_{m}^{\infty} \frac{t-|t|-1 / 2}{t^{z+1}} d t
$$

for all z with $\mathfrak{R}(z)>0$
Question 6. In this question, we study the behavior of $\zeta(z)$ inside the rectangle R_{T} defined by points $2-i T, 2+i T, \alpha_{0}+i T, \alpha_{0}-i T$ with $\alpha_{0}=1-\frac{1}{\log T}$ and $T \geq e^{2}$.

- First show that

$$
\left|\zeta(z)-\frac{1}{z-1}\right|=0(\log T)
$$

for any $z \in R_{T}$. use this to show that

$$
|\zeta(z)|=0(\log T)
$$

for any $z \in R_{T}$.

- Next show that

$$
\left|\zeta^{\prime}(z)-\frac{1}{(z-1)^{2}}\right|=0\left(\log ^{2} T\right)
$$

for any $z \in R_{T}$. use this to show that

$$
\left|\zeta^{\prime}(z)\right|=0\left(\log ^{2} \mathrm{~T}\right)
$$

for any $z \in R_{T}$.

